1. Importer les données
credit <- read.table("https://r-stat-sc-donnees.github.io/credit.csv", sep = ";", header=TRUE)
summary(credit)
Marche Apport Impaye Assurance Endettement
Mobilier / Ameublement:17 Apport :35 Imp_0 :42 AID :31 End_1:18
Moto : 8 pas_Apport:31 Imp_1_ou_2: 8 AID + Chomage :13 End_2:15
Renovation :18 Imp_3 et +:16 Sans Assurance:12 End_3:19
Scooter : 5 Senior :10 End_4:14
Side-car : 1
Voiture :17
Famille Enfants Logement Profession Intitule
Celibataire:17 Enf_0:39 Accedant a la propriete: 6 Cadre moyen :17 MLLE: 5
Divorce : 5 Enf_1: 8 Locataire :23 Cadre sup. : 8 MME : 8
Marie :25 Enf_2:11 Loge par l'employeur : 3 Ouvrier non qualifie:11 MR :53
Union libre:13 Enf_3: 6 Loge par la famille : 6 Ouvrier qualifie :18
Veuf : 6 Enf_4: 2 Proprietaire :28 Retraite :12
Age
Min. :20.00
1st Qu.:30.00
Median :40.00
Mean :39.39
3rd Qu.:50.00
Max. :60.00
credit[,"Age"] <- factor(credit[,"Age"])
for (i in 1:ncol(credit)){ # permet d’avoir les graphes un à un
par(ask=TRUE) # cliquer sur la fenêtre graphique
plot(credit[,i]) # pour voir le graphe
}

levels(credit[,"Marche"])[5] <- "Moto"
2. Choisir les variables et les individus actifs
library(FactoMineR)
res.mca <- MCA(credit, quali.sup = 6:11, level.ventil = 0)



4. Choisir le nombre d’axes
barplot(res.mca$eig[,2],names =paste("Dim", 1:nrow(res.mca$eig)))

4. Analyser les résultats
plot(res.mca, invisible = c("var","quali.sup"))

plot(res.mca, invisible = c("var","quali.sup"), habillage = "Marche")

plot(res.mca, invisible = c("var","quali.sup"), habillage = 1)

plot(res.mca, invisible ="ind",
title="Graphe des modalités actives et illustratives")

summary(res.mca, nbelements = 2, ncp = 2, nb.dec = 2)
Call:
MCA(X = credit, quali.sup = 6:11, level.ventil = 0)
Eigenvalues
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 Dim.6 Dim.7 Dim.8 Dim.9 Dim.10 Dim.11
Variance 0.40 0.32 0.29 0.27 0.24 0.22 0.18 0.16 0.15 0.11 0.10
% of var. 15.33 12.38 11.25 10.47 9.14 8.33 6.94 6.28 5.84 4.42 3.75
Cumulative % of var. 15.33 27.71 38.96 49.43 58.57 66.90 73.83 80.11 85.95 90.37 94.11
Dim.12 Dim.13
Variance 0.09 0.07
% of var. 3.32 2.57
Cumulative % of var. 97.43 100.00
Individuals (the 2 first)
Dim.1 ctr cos2 Dim.2 ctr cos2
1 | -0.41 0.63 0.10 | 0.10 0.04 0.01 |
2 | -1.07 4.38 0.47 | 0.18 0.16 0.01 |
Categories (the 2 first)
Dim.1 ctr cos2 v.test Dim.2 ctr cos2 v.test
Mobilier / Ameublement | -0.37 1.73 0.05 -1.74 | -0.77 9.52 0.21 -3.66 |
Moto | 0.33 0.74 0.02 1.06 | 0.31 0.83 0.02 1.00 |
Categorical variables (eta2)
Dim.1 Dim.2
Marche | 0.62 0.39 |
Apport | 0.24 0.10 |
Supplementary categories (the 2 first)
Dim.1 cos2 v.test Dim.2 cos2 v.test
Celibataire | -0.09 0.00 -0.41 | -0.60 0.13 -2.87 |
Divorce | 0.12 0.00 0.29 | -0.46 0.02 -1.07 |
Supplementary categorical variables (eta2)
Dim.1 Dim.2
Famille | 0.09 0.19 |
Enfants | 0.24 0.11 |
plot(res.mca, choix="var")

5. Décrire de façon automatique les principales dimensions de variabilité
dimdesc(res.mca)
$`Dim 1`
$`Dim 1`$`quali`
R2 p.value
Marche 0.6223755 2.517577e-12
Endettement 0.5453943 1.158572e-10
Assurance 0.5014062 1.950659e-09
Age 0.5167274 3.909675e-09
Profession 0.4271263 5.858295e-07
Apport 0.2439718 2.501666e-05
Logement 0.2456969 1.564047e-03
Enfants 0.2420185 1.790248e-03
$`Dim 1`$category
Estimate p.value
End_4 0.6490289 3.348217e-06
AID 0.5302478 6.062708e-06
Apport 0.3124138 2.501666e-05
Scooter 0.8708506 5.847984e-05
20 0.6839112 1.465987e-04
Voiture 0.2666230 6.046787e-04
Locataire 0.1850891 4.462960e-03
Cadre sup. 0.4935416 1.724105e-02
Ouvrier qualifie 0.2793048 2.590897e-02
Enf_3 0.2626803 2.643160e-02
30 0.2368038 4.770509e-02
Imp_0 -0.2533889 3.813572e-02
Veuf -0.4703765 3.573320e-02
Sans Assurance -0.2116033 1.775794e-02
Enf_0 -0.5327472 5.408518e-05
Proprietaire -0.4724738 3.198708e-05
pas_Apport -0.3124138 2.501666e-05
Senior -0.6672298 7.380627e-07
Renovation -0.7662537 4.588116e-07
60 -0.7960377 8.760415e-08
Retraite -0.8100583 8.760415e-08
End_2 -0.7087918 7.366689e-08
$`Dim 2`
$`Dim 2`$`quali`
R2 p.value
Impaye 0.4679498 2.330816e-09
Assurance 0.4620452 1.979222e-08
Marche 0.3895658 3.732164e-06
Profession 0.2440563 1.661355e-03
Endettement 0.1865282 4.857269e-03
Apport 0.1033137 8.498296e-03
Famille 0.1945394 9.447136e-03
Age 0.1781788 1.618904e-02
Logement 0.1734846 1.883183e-02
Intitule 0.1101503 2.532061e-02
$`Dim 2`$category
Estimate p.value
Renovation 0.31270937 3.846425e-04
Imp_1_ou_2 0.59970776 3.923948e-04
End_3 0.35505333 1.301175e-03
60 0.45569950 1.365229e-03
Retraite 0.44776850 1.365229e-03
Senior 0.51499350 2.390329e-03
Proprietaire 0.34322511 3.146222e-03
Apport 0.18269451 8.498296e-03
Marie 0.21469109 2.246058e-02
Imp_0 0.06374578 3.531316e-02
Scooter 0.40316183 4.833244e-02
Enf_0 -0.29904573 3.719994e-02
Loge par la famille -0.41561195 1.776378e-02
pas_Apport -0.18269451 8.498296e-03
End_1 -0.29113765 7.930101e-03
MLLE -0.48240681 6.593279e-03
Ouvrier non qualifie -0.46052021 4.002427e-03
Celibataire -0.33221991 3.339597e-03
Mobilier / Ameublement -0.51790848 1.276042e-04
Imp_3 et + -0.66345355 4.172443e-08
AID + Chomage -0.69851569 1.610889e-08
$`Dim 3`
$`Dim 3`$`quali`
R2 p.value
Impaye 0.5358722 3.155620e-11
Endettement 0.5132206 9.377477e-10
Assurance 0.2422502 6.034465e-04
Age 0.1649224 2.471698e-02
Marche 0.1518092 3.711724e-02
$`Dim 3`$category
Estimate p.value
Imp_3 et + 0.1873515 5.249643e-05
End_4 0.4364345 9.069521e-05
Imp_1_ou_2 0.3772195 1.937432e-04
End_2 0.3332393 1.628844e-03
Senior 0.3854726 5.513380e-03
Renovation 0.2709310 1.403508e-02
60 0.2828459 3.317176e-02
Retraite 0.2728955 3.317176e-02
Enf_3 0.3140764 3.709024e-02
50 -0.3151674 2.724952e-02
End_3 -0.2944259 1.734971e-02
Mobilier / Ameublement -0.2724059 1.364152e-02
Sans Assurance -0.4407407 4.781466e-03
End_1 -0.4752480 3.517051e-05
Imp_0 -0.5645710 5.734520e-12
Factoshiny
library(Factoshiny)
res.shiny <- MCAshiny(credit)
LS0tDQp0aXRsZTogIkFuYWx5c2UgZGVzIENvcnJlc3BvbmRhbmNlcyBNdWx0aXBsZXMiDQphdXRob3I6ICJIdXNzb24gZXQgYWwuIg0KZGF0ZTogIjA1LzA5LzIwMTgiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6IDMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiAnMycNCiAgICB0b2NfZmxvYXQ6IHllcw0KLS0tDQoNCiMgMS4gSW1wb3J0ZXIgbGVzIGRvbm7DqWVzDQoNCmBgYHtyfQ0KY3JlZGl0IDwtIHJlYWQudGFibGUoImh0dHBzOi8vci1zdGF0LXNjLWRvbm5lZXMuZ2l0aHViLmlvL2NyZWRpdC5jc3YiLCBzZXAgPSAiOyIsIGhlYWRlcj1UUlVFKQ0Kc3VtbWFyeShjcmVkaXQpDQpgYGANCg0KYGBge3J9DQpjcmVkaXRbLCJBZ2UiXSA8LSBmYWN0b3IoY3JlZGl0WywiQWdlIl0pDQpgYGANCg0KYGBge3IsIGV2YWwgPSBGQUxTRX0NCmZvciAoaSBpbiAxOm5jb2woY3JlZGl0KSl7ICMgcGVybWV0IGTigJlhdm9pciBsZXMgZ3JhcGhlcyB1biDDoCB1bg0KICBwYXIoYXNrPVRSVUUpICMgY2xpcXVlciBzdXIgbGEgZmVuw6p0cmUgZ3JhcGhpcXVlDQogIHBsb3QoY3JlZGl0WyxpXSkgICMgcG91ciB2b2lyIGxlIGdyYXBoZQ0KfSANCmBgYA0KDQpgYGB7ciwgZWNobyA9IEZBTFNFfQ0KcGxvdChjcmVkaXRbLCJNYXJjaGUiXSkNCmBgYA0KDQpgYGB7cn0NCmxldmVscyhjcmVkaXRbLCJNYXJjaGUiXSlbNV0gPC0gIk1vdG8iDQpgYGANCg0KIyAyLiBDaG9pc2lyIGxlcyB2YXJpYWJsZXMgZXQgbGVzIGluZGl2aWR1cyBhY3RpZnMNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KbGlicmFyeShGYWN0b01pbmVSKQ0KcmVzLm1jYSA8LSBNQ0EoY3JlZGl0LCBxdWFsaS5zdXAgPSA2OjExLCBsZXZlbC52ZW50aWwgPSAwKQ0KYGBgDQoNCiMgNC4gQ2hvaXNpciBsZSBub21icmUgZOKAmWF4ZXMNCg0KYGBge3IsZmlnLndpZHRoPTYsZmlnLmhlaWdodD01fQ0KYmFycGxvdChyZXMubWNhJGVpZ1ssMl0sbmFtZXMgID1wYXN0ZSgiRGltIiwgMTpucm93KHJlcy5tY2EkZWlnKSkpDQpgYGANCg0KIyA0LiBBbmFseXNlciBsZXMgcsOpc3VsdGF0cw0KDQpgYGB7cixtZXNzYWdlPUZBTFNFLHdhcm5pbmc9RkFMU0V9DQpwbG90KHJlcy5tY2EsIGludmlzaWJsZSA9IGMoInZhciIsInF1YWxpLnN1cCIpKQ0KYGBgDQoNCmBgYHtyLG1lc3NhZ2U9RkFMU0Usd2FybmluZz1GQUxTRX0NCnBsb3QocmVzLm1jYSwgaW52aXNpYmxlID0gYygidmFyIiwicXVhbGkuc3VwIiksIGhhYmlsbGFnZSA9ICJNYXJjaGUiKQ0KcGxvdChyZXMubWNhLCBpbnZpc2libGUgPSBjKCJ2YXIiLCJxdWFsaS5zdXAiKSwgaGFiaWxsYWdlID0gMSkNCmBgYA0KDQoNCmBgYHtyLG1lc3NhZ2U9RkFMU0Usd2FybmluZz1GQUxTRX0NCnBsb3QocmVzLm1jYSwgaW52aXNpYmxlID0iaW5kIiwNCiAgdGl0bGU9IkdyYXBoZSBkZXMgbW9kYWxpdMOpcyBhY3RpdmVzIGV0IGlsbHVzdHJhdGl2ZXMiKQ0KYGBgDQoNCmBgYHtyLG1lc3NhZ2U9RkFMU0Usd2FybmluZz1GQUxTRX0NCnN1bW1hcnkocmVzLm1jYSwgbmJlbGVtZW50cyA9IDIsIG5jcCA9IDIsIG5iLmRlYyA9IDIpDQpgYGANCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KcGxvdChyZXMubWNhLCBjaG9peD0idmFyIikNCmBgYA0KDQojIDUuIETDqWNyaXJlIGRlIGZhw6dvbiBhdXRvbWF0aXF1ZSBsZXMgcHJpbmNpcGFsZXMgZGltZW5zaW9ucyBkZSB2YXJpYWJpbGl0w6kNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFfQ0KZGltZGVzYyhyZXMubWNhKQ0KYGBgDQojIEZhY3Rvc2hpbnkNCg0KYGBge3IsbWVzc2FnZT1GQUxTRSx3YXJuaW5nPUZBTFNFLCBldmFsID0gRkFMU0V9DQpsaWJyYXJ5KEZhY3Rvc2hpbnkpDQpyZXMuc2hpbnkgPC0gTUNBc2hpbnkoY3JlZGl0KQ0KYGBgDQoNCg0KDQo=