1. Importer les données
univ <- read.table("https://r-stat-sc-donnees.github.io/universite.csv", sep = ";",
header = T, row.names = 1)
summary(univ)
Licence.F Licence.H Master.F Master.H Doctorat.F
Min. : 1779 Min. : 726 Min. : 1963 Min. : 811 Min. : 0.0
1st Qu.:19570 1st Qu.:15566 1st Qu.: 5910 1st Qu.: 3948 1st Qu.: 600.8
Median :31353 Median :19571 Median :15132 Median : 7155 Median :3006.0
Mean :38901 Mean :25490 Mean :18238 Mean :14341 Mean :3041.8
3rd Qu.:59225 3rd Qu.:37277 3rd Qu.:26518 3rd Qu.:21382 3rd Qu.:4500.0
Max. :94346 Max. :54861 Max. :43016 Max. :48293 Max. :7787.0
Doctorat.H Total.F Total.H Licence Master
Min. : 0.0 Min. : 4148 Min. : 1552 Min. : 2505 Min. : 3167
1st Qu.: 472.8 1st Qu.: 27330 1st Qu.: 22833 1st Qu.: 33052 1st Qu.: 9565
Median : 2476.5 Median : 56940 Median : 27399 Median : 71043 Median :21536
Mean : 3424.0 Mean : 60181 Mean : 43255 Mean : 64391 Mean :32579
3rd Qu.: 5009.5 3rd Qu.: 76044 3rd Qu.: 65817 3rd Qu.: 82375 3rd Qu.:61696
Max. :11491.0 Max. :145149 Max. :114645 Max. :135396 Max. :65371
Doctorat Total
Min. : 0 Min. : 5700
1st Qu.: 1074 1st Qu.: 45957
Median : 5734 Median :100416
Mean : 6466 Mean :103436
3rd Qu.:10248 3rd Qu.:153135
Max. :15898 Max. :213618
univ[1:4,1:3]
Licence.F Licence.H Master.F
Droit, sciences politiques 69373 37317 42371
Sciences economiques, gestion 38387 37157 29466
Administration economique et sociale 18574 12388 4183
Lettres, sciences du langage, arts 48691 17850 17672
2 et 3. Paramétrer et réaliser l’AFC
library(FactoMineR)
res.ca <- CA(univ, col.sup = 7:12)
summary(res.ca, nb.dec = 2, ncp = 2, nbelements = 3)
Call:
CA(X = univ, col.sup = 7:12)
The chi square of independence between the two variables is equal to 170789.2 (p-value = 0 ).
Eigenvalues
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
Variance 0.12 0.03 0.02 0.00 0.00
% of var. 70.72 15.51 10.90 2.63 0.25
Cumulative % of var. 70.72 86.23 97.13 99.75 100.00
Rows (the 3 first)
Iner*1000 Dim.1 ctr cos2
Droit, sciences politiques | 5.72 | -0.10 1.45 0.30 |
Sciences economiques, gestion | 9.78 | 0.18 3.85 0.46 |
Administration economique et sociale | 6.43 | -0.19 1.10 0.20 |
Dim.2 ctr cos2
Droit, sciences politiques 0.07 2.86 0.13 |
Sciences economiques, gestion -0.02 0.12 0.00 |
Administration economique et sociale -0.37 20.03 0.80 |
Columns (the 3 first)
Iner*1000 Dim.1 ctr cos2
Licence.F | 48.35 | -0.35 39.72 0.96 |
Licence.H | 24.31 | 0.23 11.51 0.55 |
Master.F | 16.11 | -0.11 1.99 0.14 |
Dim.2 ctr cos2
Licence.F -0.04 2.27 0.01 |
Licence.H -0.20 37.49 0.39 |
Master.F 0.17 20.90 0.33 |
Supplementary columns (the 3 first)
Dim.1 cos2 Dim.2 cos2
Total.F | -0.26 0.96 | 0.05 0.03 |
Total.H | 0.37 0.96 | -0.07 0.03 |
Licence | -0.12 0.55 | -0.10 0.40 |
4. Choisir le nombre d’axes
barplot(res.ca$eig[,2], names = paste("Dim", 1:nrow(res.ca$eig)))
5. Visualiser les résultats
plot(res.ca, invisible = c("col","col.sup"))
# axes 3 et 4
plot(res.ca, axes = 3:4)
Factoshiny
library(Factoshiny)
res.shiny <- CAshiny(univ)
LS0tDQp0aXRsZTogIkFuYWx5c2UgRmFjdG9yaWVsbGUgZGVzIENvcnJlc3BvbmRhbmNlcyINCmF1dGhvcjogIkh1c3NvbiBldCBhbC4iDQpkYXRlOiAiMDUvMDkvMjAxOCINCm91dHB1dDoNCiAgaHRtbF9ub3RlYm9vazoNCiAgICB0b2M6IHllcw0KICAgIHRvY19kZXB0aDogMw0KICAgIHRvY19mbG9hdDogeWVzDQogIGh0bWxfZG9jdW1lbnQ6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6ICczJw0KICAgIHRvY19mbG9hdDogeWVzDQotLS0NCg0KIyAxLiBJbXBvcnRlciBsZXMgZG9ubsOpZXMNCg0KYGBge3J9DQp1bml2IDwtIHJlYWQudGFibGUoImh0dHBzOi8vci1zdGF0LXNjLWRvbm5lZXMuZ2l0aHViLmlvL3VuaXZlcnNpdGUuY3N2Iiwgc2VwID0gIjsiLCANCiAgICAgICAgICAgICAgICAgICBoZWFkZXIgPSBULCByb3cubmFtZXMgPSAxKQ0Kc3VtbWFyeSh1bml2KQ0KdW5pdlsxOjQsMTozXQ0KYGBgDQoNCiMgMiBldCAzLiBQYXJhbcOpdHJlciBldCByw6lhbGlzZXIgbOKAmUFGQw0KDQpgYGB7cixtZXNzYWdlPUZBTFNFLHdhcm5pbmc9RkFMU0V9DQpsaWJyYXJ5KEZhY3RvTWluZVIpDQpyZXMuY2EgPC0gQ0EodW5pdiwgY29sLnN1cCA9IDc6MTIpDQpzdW1tYXJ5KHJlcy5jYSwgbmIuZGVjID0gMiwgbmNwID0gMiwgbmJlbGVtZW50cyA9IDMpDQpgYGANCg0KIyA0LiBDaG9pc2lyIGxlIG5vbWJyZSBk4oCZYXhlcw0KDQpgYGB7cixmaWcud2lkdGg9NixmaWcuaGVpZ2h0PTV9DQpiYXJwbG90KHJlcy5jYSRlaWdbLDJdLCBuYW1lcyA9IHBhc3RlKCJEaW0iLCAxOm5yb3cocmVzLmNhJGVpZykpKQ0KYGBgDQoNCiMgNS4gVmlzdWFsaXNlciBsZXMgcsOpc3VsdGF0cw0KDQpgYGB7cixtZXNzYWdlPUZBTFNFLHdhcm5pbmc9RkFMU0V9DQpwbG90KHJlcy5jYSwgaW52aXNpYmxlID0gYygiY29sIiwiY29sLnN1cCIpKQ0KYGBgDQoNCmBgYHtyLG1lc3NhZ2U9RkFMU0Usd2FybmluZz1GQUxTRX0NCiMgYXhlcyAzIGV0IDQNCnBsb3QocmVzLmNhLCBheGVzID0gMzo0KQ0KYGBgDQoNCiMgRmFjdG9zaGlueQ0KDQpgYGB7cixtZXNzYWdlPUZBTFNFLHdhcm5pbmc9RkFMU0UsIGV2YWwgPSBGQUxTRX0NCmxpYnJhcnkoRmFjdG9zaGlueSkNCnJlcy5zaGlueSA8LSBDQXNoaW55KHVuaXYpDQpgYGANCg0KDQoNCg==