1. Importer les données
don <- read.table("https://r-stat-sc-donnees.github.io/poulpe.csv",header=TRUE,sep=";")
summary(don)
Poids Sexe
Min. : 300 Femelle:13
1st Qu.:1480 Male :15
Median :1800
Mean :2099
3rd Qu.:2750
Max. :5400
2. Comparer graphiquement les deux sous-populations
boxplot(Poids ~ Sexe, ylab="Poids", xlab="Sexe", data=don)
require(ggplot2)
ggplot(don)+aes(x=Sexe,y=Poids)+geom_boxplot()
3. Estimer les statistiques de base dans chaque groupe
aggregate(don$Poids,by=list(don$Sexe),FUN=summary)
Group.1 x.Min. x.1st Qu. x.Median x.Mean x.3rd Qu. x.Max.
1 Femelle 300.000 900.000 1500.000 1405.385 1800.000 2400.000
2 Male 1150.000 1800.000 2700.000 2700.000 3300.000 5400.000
tapply(don$Poids,don$Sexe,sd,na.rm=TRUE)
Femelle Male
621.9943 1158.3547
4. Tester la normalité des données
select.males <- don[,"Sexe"]=="Male"
shapiro.test(don[select.males,"Poids"])
Shapiro-Wilk normality test
data: don[select.males, "Poids"]
W = 0.93501, p-value = 0.3238
5. Tester l’égalité des variances
var.test(Poids ~ Sexe,conf.level=.95,data=don)
F test to compare two variances
data: Poids by Sexe
F = 0.28833, num df = 12, denom df = 14, p-value = 0.03713
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
0.09452959 0.92444666
sample estimates:
ratio of variances
0.2883299
6. Tester l’égalité des moyennes
t.test(Poids~Sexe, alternative="two.sided", conf.level=.95,
var.equal=FALSE, data=don)
Welch Two Sample t-test
data: Poids by Sexe
t = -3.7496, df = 22.021, p-value = 0.001107
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2010.624 -578.607
sample estimates:
mean in group Femelle mean in group Male
1405.385 2700.000
t.test(Poids~Sexe, alternative="greater", conf.level=.95,
var.equal=FALSE, data=don)
Welch Two Sample t-test
data: Poids by Sexe
t = -3.7496, df = 22.021, p-value = 0.9994
alternative hypothesis: true difference in means is greater than 0
95 percent confidence interval:
-1887.471 Inf
sample estimates:
mean in group Femelle mean in group Male
1405.385 2700.000
Pour aller plus loin
power.t.test(delta = 1, sd = 3, sig.level = 0.05, power = 0.8)
Two-sample t test power calculation
n = 142.2466
delta = 1
sd = 3
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group
power.t.test(n = 100, delta = 1, sd = 3, sig.level = 0.05)
Two-sample t test power calculation
n = 100
delta = 1
sd = 3
sig.level = 0.05
power = 0.6501087
alternative = two.sided
NOTE: n is number in *each* group
LS0tDQp0aXRsZTogIkNvbXBhcmFpc29uIGRlIGRldXggbW95ZW5uZXMiDQphdXRob3I6ICJIdXNzb24gZXQgYWwuIg0KZGF0ZTogIjA1LzA5LzIwMTgiDQpvdXRwdXQ6DQogIGh0bWxfbm90ZWJvb2s6DQogICAgdG9jOiB5ZXMNCiAgICB0b2NfZGVwdGg6IDMNCiAgICB0b2NfZmxvYXQ6IHllcw0KICBodG1sX2RvY3VtZW50Og0KICAgIHRvYzogeWVzDQogICAgdG9jX2RlcHRoOiAnMycNCiAgICB0b2NfZmxvYXQ6IHllcw0KLS0tDQoNCiMgMS4gSW1wb3J0ZXIgbGVzIGRvbm7DqWVzDQoNCmBgYHtyfQ0KZG9uIDwtIHJlYWQudGFibGUoImh0dHBzOi8vci1zdGF0LXNjLWRvbm5lZXMuZ2l0aHViLmlvL3BvdWxwZS5jc3YiLGhlYWRlcj1UUlVFLHNlcD0iOyIpDQpzdW1tYXJ5KGRvbikNCmBgYA0KDQojIDIuIENvbXBhcmVyIGdyYXBoaXF1ZW1lbnQgbGVzIGRldXggc291cy1wb3B1bGF0aW9ucw0KDQpgYGB7cixmaWcud2lkdGg9NCxmaWcuaGVpZ2h0PTR9DQpib3hwbG90KFBvaWRzIH4gU2V4ZSwgeWxhYj0iUG9pZHMiLCB4bGFiPSJTZXhlIiwgZGF0YT1kb24pDQpgYGANCg0KYGBge3IsZmlnLndpZHRoPTQsZmlnLmhlaWdodD00LG1lc3NhZ2U9RkFMU0Usd2FybmluZz1GQUxTRX0NCnJlcXVpcmUoZ2dwbG90MikNCmdncGxvdChkb24pK2Flcyh4PVNleGUseT1Qb2lkcykrZ2VvbV9ib3hwbG90KCkNCmBgYA0KDQojIDMuIEVzdGltZXIgbGVzIHN0YXRpc3RpcXVlcyBkZSBiYXNlIGRhbnMgY2hhcXVlIGdyb3VwZQ0KDQpgYGB7cn0NCmFnZ3JlZ2F0ZShkb24kUG9pZHMsYnk9bGlzdChkb24kU2V4ZSksRlVOPXN1bW1hcnkpDQpgYGANCg0KYGBge3J9DQp0YXBwbHkoZG9uJFBvaWRzLGRvbiRTZXhlLHNkLG5hLnJtPVRSVUUpDQpgYGANCiANCiMgNC4gVGVzdGVyIGxhIG5vcm1hbGl0w6kgZGVzIGRvbm7DqWVzDQoNCmBgYHtyfQ0Kc2VsZWN0Lm1hbGVzIDwtIGRvblssIlNleGUiXT09Ik1hbGUiDQpzaGFwaXJvLnRlc3QoZG9uW3NlbGVjdC5tYWxlcywiUG9pZHMiXSkNCmBgYA0KDQojIDUuIFRlc3RlciBs4oCZw6lnYWxpdMOpIGRlcyB2YXJpYW5jZXMNCg0KYGBge3J9DQp2YXIudGVzdChQb2lkcyB+IFNleGUsY29uZi5sZXZlbD0uOTUsZGF0YT1kb24pDQpgYGANCg0KIyA2LiBUZXN0ZXIgbOKAmcOpZ2FsaXTDqSBkZXMgbW95ZW5uZXMNCmBgYHtyfQ0KdC50ZXN0KFBvaWRzflNleGUsIGFsdGVybmF0aXZlPSJ0d28uc2lkZWQiLCBjb25mLmxldmVsPS45NSwNCiAgICAgICB2YXIuZXF1YWw9RkFMU0UsIGRhdGE9ZG9uKQ0KYGBgDQoNCmBgYHtyfQ0KdC50ZXN0KFBvaWRzflNleGUsIGFsdGVybmF0aXZlPSJncmVhdGVyIiwgY29uZi5sZXZlbD0uOTUsDQogICAgICAgdmFyLmVxdWFsPUZBTFNFLCBkYXRhPWRvbikNCmBgYA0KDQoNCiMgUG91ciBhbGxlciBwbHVzIGxvaW4NCg0KYGBge3J9DQpwb3dlci50LnRlc3QoZGVsdGEgPSAxLCBzZCA9IDMsIHNpZy5sZXZlbCA9IDAuMDUsIHBvd2VyID0gMC44KQ0KYGBgDQoNCmBgYHtyfQ0KcG93ZXIudC50ZXN0KG4gPSAxMDAsIGRlbHRhID0gMSwgc2QgPSAzLCBzaWcubGV2ZWwgPSAwLjA1KQ0KYGBgDQoNCg==